Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Lancet Reg Health Am ; : 100369, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2042001

ABSTRACT

Background: Public health measures designed to reduce SARS-CoV-2 transmission led to reduced access to care and prevention services for people living with or at risk of acquiring HIV, particularly during the initial introduction of extensive restrictions. This reduction in access may have contributed to increases in HIV transmission not outweighed by decreases in transmission occurring as a result of reduced contact rates promoted by the same public health measures. Methods: We synthesize available province-wide HIV data in British Columbia, Canada, together with public mobility data to phylogenetically investigate the early impacts of SARS-CoV-2 on HIV transmission. Cluster growth, coalescent branching events and lineage-level diversification rates were assessed in "pre-lockdown" (January 22-March 21, 2020), "lockdown" (March 22-May 20, 2020) and "post-lockdown" (May 21-July 19, 2020) to facilitate comparison of transmission trends across key populations. Findings: Results reveal increased HIV transmission in a limited number of clusters in association with reduced access to health services during the initial introduction of SARS-CoV-2-related restrictions. In particular, clusters associated with people who inject drugs (PWID) show rapid growth, extensive branching events in phylogenetic trees during and following the lockdown period, and elevated median change in individuals' viral diversification rates during lockdown compared to clusters associated with men who have sex with men (MSM), consistent with increased transmission rates between PWID. Interpretation: Increased vigilance and innovative targeted solutions are critical to offset potential negative impacts of SARS-CoV-2 or future pandemic-related restrictions on HIV epidemic dynamics. Funding: Funding sources include Genome Canada and Genome BC, the Public Health Agency of Canada, the BC Centre for Excellence in HIV/AIDS, and the Canadian Institutes of Health Research Coronavirus Rapid Response Programme. Student funding includes a NSERC CREATE scholarship and a Canadian Institutes of Health Research graduate fellowship.

2.
Elife ; 112022 08 02.
Article in English | MEDLINE | ID: covidwho-1969731

ABSTRACT

Tracking the emergence and spread of SARS-CoV-2 lineages using phylogenetics has proven critical to inform the timing and stringency of COVID-19 public health interventions. We investigated the effectiveness of international travel restrictions at reducing SARS-CoV-2 importations and transmission in Canada in the first two waves of 2020 and early 2021. Maximum likelihood phylogenetic trees were used to infer viruses' geographic origins, enabling identification of 2263 (95% confidence interval: 2159-2366) introductions, including 680 (658-703) Canadian sublineages, which are international introductions resulting in sampled Canadian descendants, and 1582 (1501-1663) singletons, introductions with no sampled descendants. Of the sublineages seeded during the first wave, 49% (46-52%) originated from the USA and were primarily introduced into Quebec (39%) and Ontario (36%), while in the second wave, the USA was still the predominant source (43%), alongside a larger contribution from India (16%) and the UK (7%). Following implementation of restrictions on the entry of foreign nationals on 21 March 2020, importations declined from 58.5 (50.4-66.5) sublineages per week to 10.3-fold (8.3-15.0) lower within 4 weeks. Despite the drastic reduction in viral importations following travel restrictions, newly seeded sublineages in summer and fall 2020 contributed to the persistence of COVID-19 cases in the second wave, highlighting the importance of sustained interventions to reduce transmission. Importations rebounded further in November, bringing newly emergent variants of concern (VOCs). By the end of February 2021, there had been an estimated 30 (19-41) B.1.1.7 sublineages imported into Canada, which increasingly displaced previously circulating sublineages by the end of the second wave.Although viral importations are nearly inevitable when global prevalence is high, with fewer importations there are fewer opportunities for novel variants to spark outbreaks or outcompete previously circulating lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics/methods , Humans , Ontario , Phylogeny , SARS-CoV-2/genetics
3.
J Evol Biol ; 34(6): 924-936, 2021 06.
Article in English | MEDLINE | ID: covidwho-1130344

ABSTRACT

Natural selection operating on the genomes of viral pathogens in different host species strongly contributes to adaptation facilitating host colonization. Here, we analyse, quantify and compare viral adaptation in genomic sequence data derived from seven zoonotic events in the Coronaviridae family among primary, intermediate and human hosts. Rates of nonsynonymous (dN ) and synonymous (dS ) changes on specific amino acid positions were quantified for each open reading frame (ORF). Purifying selection accounted for 77% of all sites under selection. Diversifying selection was most frequently observed in viruses infecting the primary hosts of each virus and predominantly occurred in the orf1ab genomic region. Within all four intermediate hosts, diversifying selection on the spike gene was observed either solitarily or in combination with orf1ab and other genes. Consistent with previous evidence, pervasive diversifying selection on coronavirus spike genes corroborates the role this protein plays in host cellular entry, adaptation to new hosts and evasion of host cellular immune responses. Structural modelling of spike proteins identified a significantly higher proportion of sites for SARS-CoV-2 under positive selection in close proximity to sites of glycosylation relative to the other coronaviruses. Among human coronaviruses, there was a significant inverse correlation between the number of sites under positive selection and the estimated years since the virus was introduced into the human population. Abundant diversifying selection observed in SARS-CoV-2 suggests the virus remains in the adaptive phase of the host switch, typical of recent host switches. A mechanistic understanding of where, when and how genomic adaptation occurs in coronaviruses following a host shift is crucial for vaccine design, public health responses and predicting future pandemics.


Subject(s)
Adaptation, Biological/genetics , Coronavirus/genetics , Evolution, Molecular , Selection, Genetic , Viral Zoonoses/genetics , Animals , Genome, Viral , Host-Pathogen Interactions , Humans
4.
Science ; 370(6516): 564-570, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-760215

ABSTRACT

Accurate understanding of the global spread of emerging viruses is critical for public health responses and for anticipating and preventing future outbreaks. Here we elucidate when, where, and how the earliest sustained severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission networks became established in Europe and North America. Our results suggest that rapid early interventions successfully prevented early introductions of the virus from taking hold in Germany and the United States. Other, later introductions of the virus from China to both Italy and Washington state, United States, founded the earliest sustained European and North America transmission networks. Our analyses demonstrate the effectiveness of public health measures in preventing onward transmission and show that intensive testing and contact tracing could have prevented SARS-CoV-2 outbreaks from becoming established in these regions.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Air Travel , COVID-19 , China/epidemiology , Computer Simulation , Contact Tracing , Coronavirus Infections/prevention & control , Evolution, Molecular , Genome, Viral , Germany/epidemiology , Humans , Italy/epidemiology , Mass Screening , Mutation , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL